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Abstract—Discriminative patterns can provide valuable insights into data sets with class labels, that may not be available from the
individual features or the predictive models built using them. Most existing approaches work efficiently for sparse or low-dimensional
data sets. However, for dense and high-dimensional data sets, they have to use high thresholds to produce the complete results within
limited time, and thus, may miss interesting low-support patterns. In this paper, we address the necessity of trading off the
completeness of discriminative pattern discovery with the efficient discovery of low-support discriminative patterns from such data sets.
We propose a family of antimonotonic measures named SupMaxK that organize the set of discriminative patterns into nested layers of
subsets, which are progressively more complete in their coverage, but require increasingly more computation. In particular, the
member of SupMaxK with K = 2, named SupMaxPair, is suitable for dense and high-dimensional data sets. Experiments on both
synthetic data sets and a cancer gene expression data set demonstrate that there are low-support patterns that can be discovered
using SupMaxPair but not by existing approaches. Furthermore, we show that the low-support discriminative patterns that are only
discovered using SupMaxPair from the cancer gene expression data set are statistically significant and biologically relevant. This
illustrates the complementarity of SupMaxPair to existing approaches for discriminative pattern discovery. The codes and data set for
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this paper are available at http://vk.cs.umn.edu/SMP/.

Index Terms—Association analysis, discriminative pattern mining, biomarker discovery, permutation test.

1 INTRODUCTION

OR data sets with class labels, association patterns [2],

[43] that occur with disproportionate frequency in some
classes versus others can be of considerable value in many
applications. Such applications include census data analysis
that aims at identifying differences among demographic
groups [14], [5] and biomarker discovery, which searches
for groups of genes or related entities, that are associated
with diseases [8], [39], [1]. We will refer to these patterns as
discriminative patterns' in this paper, although they have
also been investigated under other names [35], such as
emerging patterns (EPs) [14] and contrast sets (CSETs) [5].
In this paper, we focus on two-class problems, which can be
generalized to multiclass problems as described in [5].

Discriminative patterns have been shown to be useful for
improving the classification performance for data sets
where combinations of features have better discriminative

1. The terms “pattern” and “item set” are used interchangeably in this
paper.
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power than the individual features [9], [13], [47], [10], [15],
[30]. More importantly, as discussed in [5], discriminative
pattern mining can provide insights beyond classification
models. For example, for biomarker discovery from case-
control data (e.g., disease versus normal samples), it is
important to identify groups of biological entities, such as
genes and single-nucleotide polymorphisms (SNPs), that
are collectively associated with a certain disease or other
phenotypes [1], [50], [38]. Algorithms that can discover a
comprehensive set of discriminative patterns are especially
useful for domains like biomarker discovery, and such
algorithms are the focus of this paper.

The algorithms for finding discriminative patterns
usually employ a measure for the discriminative power of
a pattern. Such measures are generally defined as a function
of the pattern’s relative support” in the two classes, and can
be defined either simply as the ratio [14] or difference [5] of
the two supports, or other variations, such as its informa-
tion gain [9], Gini index, odds ratio [43], etc. In this paper,
we use the measure that is defined as the difference of the
supports of an item set in the two classes (originally
proposed in [5] and used by its extensions [24], [25]). We
will refer to this measure as DiffSup (formally discussed in
Section 2). Given a data set with 0-1 class labels and a
DiffSup threshold r, the patterns with Dif fSup > r can be
considered as valid discriminative patterns.

To introduce some key ideas about discriminative
patterns and make the following discussion easier to follow,

2. Note that, in this paper, unless specified, the support of a pattern in a
class is relative to the number of transactions (instances) in that class, i.e., a
ratio between 0 and 1, which can help handle the case of skewed class
distributions.

Published by the IEEE Computer Society
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Fig. 1. A sample data set with interesting discriminative patterns (P, P)
and uninteresting patterns (P, P).

consider Fig. 1, which displays a sample data set’ contain-
ing 15 items (columns) and two classes, each with
10 instances (rows). In the figure, four patterns (sets of
binary variables) can be observed: P, = {iy,i9,13},
Py = {i5,i¢,i7}, Py = {ig, 410}, and Py = {i12,413,714}. P and
Py are interesting discriminative patterns that occur with
different frequencies in the two classes, whose DiffSup is 0.6
and 0.7, respectively. In contrast, P, and P; are uninterest-
ing patterns with a relatively uniform occurrence across the
classes, both having a DiffSup of 0. Furthermore, P; is a
discriminative pattern whose individual items are also
highly discriminative, while those of P, are not. Based on
support in the whole data set, P is a frequent nondiscri-
minative pattern, while P is a relatively infrequent
nondiscriminative pattern.

Note that the discriminative measures discussed above
are generally not antimonotonic as shown by [14], [5], [9].
Take DiffSup for instance (while other measures like
support ratio, information gain, and odds ratio are not
antimonotonic either): although the DiffSup of the three
items in P are 0, 0, and 0.2, respectively, P has a DiffSup of
0.6 as an item set. Due to the lack of antimonotonicity, these
measures cannot be directly used in an Apriori framework
[2] for exhaustive and efficient pattern mining as can be
done for measures like support [2], h-confidence [53], etc.
To address this issue, many approaches [29], [28], [55], [11],
[9] adopt a two-step strategy (denoted as Group A), where
first, a frequent pattern mining algorithm is used to find all
(closed) frequent patterns that satisfy a certain support
threshold minsup either from the whole data set or from
only one of the classes. The patterns found can be further
refined using other interestingness measures (e.g., [7], [23],
[44]). Then, as postprocessing, DiffSup is computed for each
of these patterns, based on which discriminative patterns
are selected. Note that, in general, these two-step ap-
proaches can work even with a very low minsup threshold
[49], [9] on relatively sparse or low-dimensional data sets.

However, since these approaches ignore class-label
information in the mining process, many frequent patterns
discovered in the first step may turn out to have low
discriminative power in the second step. For instance, in
Fig. 1, the relative supports of P, and P; in the whole data
set are 0.6 and 0.3, respectively, and will be considered as
frequent patterns if the support threshold is 0.2. However,

3. The discussion in this paper assumes that the data are binary. Nominal
categorical data can be converted to binary data without loss of information,
while ordinal categorical data and continuous data can be binarized,
although with some loss of magnitude and order information.
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Fig. 2. An lllustration of the coverage of the space of discriminative
patterns by different approaches given the same amount of time. The t’s
on the y-axis represent the lowest support of the patterns that are,
respectively, covered by the corresponding approaches (represented by
boxes), given the same and fixed amount of time. (a) Box A, B, and C
represent the set of patterns discovered by the corresponding
approaches in group A, B, and C, respectively. (b) lllustration of the
trade-off between the capability to search low-support discriminative
patterns in dense and high-dimensional data and the completeness of
the pattern discovery. Boxes X, Y, and Z represent three conceptual
low-support discriminative pattern mining approaches that discover
patterns not found by the approaches in groups A4, B, and C. Note that,
in this figure, the set of interesting discriminative patterns is the same as
that in (a), but the corresponding *’s are not shown for the sake of clarity.
(a) The limitation of existing approaches. (b) The motivation of the
proposed work.

P, and P; are not discriminative since they both have a
DiffSup of 0. In particular, in data sets with relatively high
density* and high dimensionality, a huge number of
nondiscriminative patterns like P» and P in Fig. 1 may
exist. Such patterns may meet the minsup threshold and
would be discovered in the first step, but would be found as
nondiscriminative patterns in the second step. If a low
minsup is used, a huge number of such patterns can reduce
the efficiency of both the two steps as discussed in [10]. In
such a situation, the two-step approaches have to use a
sufficiently high minsup in order to generate the complete
set of results within an acceptable amount of time, and thus
may miss a large number of highly discriminative patterns
that fall below the minsup threshold.

A possible strategy for improving the performance of the
two-step approaches is to directly utilize the support of a
pattern in the two classes for pruning some nondiscrimina-
tive patterns in the pattern mining stage. Indeed, several
approaches have been proposed [5], [9], where the anti-
monotonic upper bounds of discriminative measures, such
as DiffSup, are used for pruning some nondiscriminative
patterns in an Apriori-like framework [2]. This strategy, like
the two-step approaches, also guarantees to find the
complete set of discriminative patterns with respect to a
threshold, although in a more efficient manner. However, in
data sets with relatively high density and high dimension-
ality, there can be a large number of frequent nondiscrimi-
native patterns like P in Fig. 1. Such patterns may not be
pruned by these approaches because the upper bounds of
the discriminative measures may be weak (technical details
in Section 3). Thus, as illustrated in Fig. 2a, these approaches
(referred to as group B in the rest of this paper) are able to
discover a larger fraction of the interesting discriminative
patterns as compared to the two-step approaches. However,
they may still miss a lot of highly discriminative patterns,
particularly those at low-support levels, given the same

4. The density of a transaction matrix is the percentage of 1s in the
transaction-by-item matrix.
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fixed amount of time. These low-support patterns are
supported by a relatively small number of samples but can
still be highly discriminative according to their DiffSup
value, especially in the case of data sets with skewed class
size distributions.

Yet another strategy for discovering a significant subset
of the discriminative patterns is to directly use a measure
of discriminative power for pruning nondiscriminative
patterns [56]. As an instance of such an approach, DiffSup
can be computed for each candidate pattern «, and if
Dif fSup(a) < r, then « and all its supersets can be pruned
in an Apriori-like algorithm [2]. This strategy is computa-
tionally more efficient than the two-step approaches,
because no patterns with DiffSup(a) < r are generated
during the mining process. However, this improved
efficiency comes at the cost of not discovering the complete
set of discriminative patterns, since DiffSup is not anti-
monotonic [5]. More specifically, the algorithms in this
group (referred to as group C in the rest of this paper) may
miss interesting discriminative patterns whose individual
items are not discriminative (e.g., P, in Fig. 1). With respect
to the coverage of the set of interesting discriminative
patterns, the approaches in this group may be able to
discover low-support patterns at the expense of missing a
large number of interesting patterns, as illustrated by the
stars not included in box C in Fig. 2a. This observation is
also reflected in our experimental results (Section 6.2.2).

As can be seen from the discussion above, which is
summarized in Fig. 2a, the current approaches face an
inherent trade-off when discovering discriminative patterns
from a dense and high-dimensional data set. The approaches
in groups A and B face challenges with discovering low-
support patterns due to their focus on the complete
discovery of discriminative patterns satisfying the corre-
sponding thresholds. On the other hand, the approaches in
group C sacrifice completeness for the ability of discovering
low-support discriminative patterns. This trade-off is ex-
pected to be faced by any algorithm for this complex
problem, particularly due to the restriction of fixed
computational time. In such a scenario, an appropriate
approach to discover some of the interesting discriminative
patterns missed by the current approaches is to formulate
new measures for discriminative power and corresponding
algorithms that can progressively explore lower support
thresholds for discovering patterns, while trading off
completeness to some extent. Such a design is illustrated in
Fig. 2b, where boxes X, Y, and Z represent three approaches,
which can discover patterns with progressively lower
thresholds (t, > t, > t.). However, the cost associated with
this ability is that of potentially missing some patterns that
are at higher support levels. Still, X, Y, and Z can all
discover several patterns that are exclusive to only one of
them, and can thus play a complementary role to the existing
approaches by expanding the coverage of the set of
interesting discriminative patterns.

Corresponding to the motivation discussed above, we
propose a family of antimonotonic measures of discrimina-
tive power named SupMaxK. These measures conceptually
organize the set of discriminative patterns into nested layers
of subsets, which are progressively complete in their cover-
age, but require increasingly more computation for their
discovery. Essentially, SupMaxK estimates the DiffSup of an
item setby calculating the difference of its support in one class

and the maximal supportamong all of its size- K subsets in the
other class. The smaller the value of K, the more effective
SupMaxK is for finding low-support discriminative patterns
by effectively pruning frequent nondiscriminative patterns.
Notably, due to the antimonotonicity property of all the
members of SupMaxK, each of them can be used in an Apriori-
like framework [2] to guarantee the discovery of all the
discriminative patterns with SupMaxzK > r, where r is a
user-specified threshold. Given the same (limited) amount of
time, the members of this family provide a trade-off between
the ability to search for low-support discriminative patterns
and the coverage of the space of valid discriminative patterns
for the corresponding threshold, as illustrated by the three
conceptual approaches X, Y, and Z in Fig. 2b. In particular,
we find that a special member with X' = 2named SupMaxPair
is suitable for dense and high-dimensional data. We have
designed a framework, named SMP, which uses SupMaxPair
for discovering discriminative patterns. Carefully designed
experiments with both synthetic data sets and a cancer gene
expression data set are used to demonstrate that SMP can
serve a complementary role to the existing approaches by
discovering low support yet highly discriminative patterns
from dense and high-dimensional data, when the latter fail to
discover them within an acceptable amount of time.

1.1 Contributions of This Paper
The contributions of this paper can be summarized as
follows:

1. We address the necessity of trading off the com-
pleteness of discriminative pattern discovery with
the ability to discover low-support discriminative
patterns from dense and high-dimensional data
within an acceptable amount of time. For this, we
propose a family of antimonotonic measures named
SupMaxK that conceptually organize the set of
discriminative patterns into nested layers of subsets,
which are progressively more complete in their
coverage, but require increasingly more computa-
tion for their discovery.

2. In particular, SupMaxK with K =2, named Sup-
MaxPair, is a special member of this family that is
suitable for dense and high-dimensional data, and
can serve a complementary role to the existing
approaches by helping to discover low-support
discriminative patterns, when the latter fail to
discover them within an acceptable amount of time.
We designed a framework, named SMP, which uses
SupMaxPair for discovering discriminative patterns.

3. Avariety of experiments with both synthetic data sets
and a cancer gene expression data set are presented to
demonstrate that there are many patterns with
relatively low support that can be discovered by
SMP but not by the existing approaches. In particular,
these experiments rigorously demonstrate that the
low-support discriminative patterns discovered only
by SMP from the cancer gene expression data set are
statistically significant (via permutation test [18],
[42]) and biologically relevant (via comparison with
a list of cancer-related genes [21] and a collection of
biological gene sets [42] (e.g., pathways)). These are
the recognized methods for evaluating the utility of
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such patterns for applications such as biomarker
discovery [42], [8], [22].
The source codes and data set used in this paper are
available at http://vk.cs.umn.edu/SMP/.

2 BaAsic TERMINOLOGY AND PROBLEM DEFINITION

Let D be a data set with a set of m items, I = {i1,42,...,im},
two class labels S; and S5, and a set of n labeled instances
(item sets), D = {(z;,y:)};_,, where z; C I is a set of items
and y; € {51,592} is the class label for z;. The two sets of
instances that, respectively, belong to the class S; and S, are
denoted by D! and D?, and we have |D| = |D'| + |D?|. For
an item set a = {a,as,...,} where a C I, the set of
instances in D! and D? that contain « are, respectively,
denoted by D! and D?. The relative supports of « in classes
Sy and S, are RelSup'(a) = \g}f“ and RelSup®(a) = %,
respectively. RelSup is antimonotonic since the denomi-
nator is fixed and the numerator is support of the item set,
which is antimonotonic.

The absolute difference of the relative supports of « in
D' and D? is defined originally in [5] and denoted in this
paper as DiffSup:

DiffSup(a) = |RelSup'(a) — RelSup?(a)|. (1)

An item set « is r — discriminative if Dif fSup(a) > r.
The problem addressed by discriminative pattern mining
algorithms is to discover all patterns in a data set with
DiffSup > r.

Without loss of generality, we only consider discrimina-
tive patterns for the binary-class problem. Our work can be
extended to multiple classes as described in [5].

3 COMPUTATIONAL LIMITATIONS OF CURRENT
APPROACHES

As discussed in Section 1, in dense and high-dimensional
data, the approaches in groups A and B have to use a
relatively high threshold in order to provide the complete
result within an acceptable amount of time. In this section,
we will show that this limitation is essentially due to the
ineffective pruning of frequent nondiscriminative patterns
(e.g., P, in Fig. 1). Generally, the approaches in group B are
relatively more efficient than those in group A, as discussed
in Section 1. We use the measure originally proposed in
CSET [5] as a representative of group B for this discussion,
while a similar discussion also holds for other approaches
in group B [9], [34]. In CSET, an upper bound of DiffSup is
defined as the bigger of the relative supports of a pattern «
in D! and D2 In this paper, we denote it as BiggerSup:

BiggerSup(a) = maz(RelSup' (), RelSup*(a)).  (2)

Lemma 1. BiggerSup is antimonotonic.

Proof. Follows from the antimonotonicity of RelSup and the
property of the mazx function. O

Since BiggerSup is an upper bound of DiffSup [5], and it is
also antimonotonic (Lemma 1), CSET [5] uses BiggerSup as a
pruning measure in a Apriori-like framework, and can
discover, given sufficient time and computing resources,

the complete set of discriminative patterns (w.r.t a BiggerS-
up threshold). However, by using the bigger one to estimate
the difference of the two supports, BiggerSup is a weak
upper bound of DiffSup. For instance, if we want to use
CSET to search for 0.4 — discriminative patterns in Fig. 1, P3
can be pruned, because it has a BiggerSup of 0.3. However,
P, cannot be pruned (BiggerSup(P,) = 0.6), even though it
is not discriminative (Dif fSup(P,) = 0). More generally,
BiggerSup-based pruning can only prune infrequent non-
discriminative patterns with relatively low support, but not
frequent nondiscriminative patterns. Therefore, in dense
and high-dimensional data, where a large number of
frequent nondiscriminative patterns are expected to exist,
CSET with a relatively low BiggerSup threshold can often
fail to produce the complete results in a reasonable amount
of time. Thus, CSET has to set the BiggerSup threshold high
and may not discover discriminative patterns at lower
support that may be of interest. Similar discussion on the
limited ability of pruning frequent nondiscriminative
patterns also holds for other approaches in groups A and
B, i.e., all the two-step approaches, and those based on the
information gain upper bound [9], and other statistical
metric-based pruning [5], [34].

4 PROPOSED APPROACH

As shown above, the limitation of existing approaches is
essentially the ineffectiveness of pruning frequent nondiscri-
minative patterns. Conceptually, to prune frequent nondis-
criminative patterns, anew measure should be designed such
that a pattern’s support in one class can be effectively limited
to a relatively smaller number compared to its support in the
other class. In this section, we start with such a measure
SupMazx1 in Definition 1, and then extend it to a family of
measures SupMaxK. Then, we will discuss the relationships
between Di f f Sup, BiggerSup, and SupMaxK. Finally, we will
focus on a special member of this family SupMaxPair that is
suitable for high-dimensional data. Note that, for an item set
a, two cases can happen: RelSup'(a) > RelSup®(a) or
RelSup'(a) < RelSup®(c). In the following discussion, with-
out loss of generality, we assume RelSup'(a) > RelSup®(a)
for simplicity.

4.1 SupMax1: A Simple Measure to Start with

Definition 1. The SupMax1 of an item set « in D' and D?* is
defined as

SupMaz1(a) = RelSup' (o) — mazaco(RelSup®({a})).

SupMazx1 of an item set « is computed as the difference
between the support of o in D!, and the maximal individual
support of the items in « in D% SupMaxl approximates
Dif fSup by using the maximal individual support in D? to
estimate RelSup®(a). Clearly, the maximal individual
support is quite a rough estimator for RelSup®(a), because
a pattern can have very low support in class S, but the
items in it can still have very high individual supports in
this class. However, an alternative way to interpret
SupMazxl is that a pattern with large SupMaxl has
relatively high support in one class and all the items in it
have relatively low support in the other class. P, is such an
example whose SupMazx1 is 0.9 — maz(0.3,0.3,0.3) = 0.6 as
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shown in Fig. 1. Thus, given a SupMax1 threshold, say 0.4,
SupMax1 discovers a subset of 0.4 — discriminative pat-
terns but not all, e.g., it will miss patterns like P, in Fig. 1,
which has relatively high DiffSup (0.6) but zero SupMazx1.

4.2 SupMaxK

Following the rationale of SupMazx1, the maximal support
of size-k subsets of a pattern in D? can be used to estimate
RelSup® () instead of using maximal individual support in
class S, to estimate RelSup®(a). This can provide a better
estimation of RelSup*(a). In such a manner, SupMaz1 can
be generalized into a family of measures SupMaxK, which is
formally defined in Definition 2. Note that in the following
discussion, SupMaxK will be used to refer to this family as
well as one of its general members, for the clarity of
presentation.

Definition 2. The SupMaxK of an item set o in D' and D? is
defined as

SupMazK (o) = RelSup'(a) — @gx(RelSupQ(ﬂ)),
where |8 = K.

So, SupMaxK of an item set o is computed as the
difference between the support of « in D!, and the
maximal support among all the size-K subsets of a in D?.
Note that, in this paper, SupMaxK is defined with respect
to DiffSup, while similar concept can also be applied to
other discriminative measures such as the ratio-based
measure [14].

4.3 Properties of the SupMaxK Family

In the following sections, we discuss three properties of the
SupMaxK family.

4.3.1 The Subset-Superset Relationship among
SupMaxK Members

Based on the definition of SupMaxK, the following two
lemmas show the relationship among SupMaxK members.

Lemma 2. If we use MaxSup(w, K) to denote the second
component of SupMaxK(«), i.e., mazsc,(RelSup(5)) with
|8l = K, then MaxSup(a, K) is a lower bound of
MaxSup(o, K — 1) for integer K € [2, ).

Proof. For every size-(K — 1) subsetof a(say 5, |3] = K — 1),
there exists a size-K subset of « (say ', |#'| = K) such that
B C @, eg., by adding any ¢ to 3, where i € v and i ¢ (3.
Based on the antimonotonicity property of RelSup, it is
guaranteed that RelSup(f') < RelSup(8). Then, from the
properties of the mazx function, mazgc,(RelSup(f')) <
mazgc,(RelSup(B)). Thus, MazSup(a, K) is a lower
bound of MaxSup(a, K —1). 0

Lemma 3. SupMax (K — 1) of an item set «vis a lower bound of its
SupMaxK, or alternatively SupMaxK of an item set o is an
upper bound of its SupMax(K — 1), for integer K € [2, |a].

Proof. Follows directly from Definition 2, Lemma 2. O

From Lemma 3, we know that, given the same threshold
r and sufficient time, the set of patterns discovered with
SupMaz(K — 1) in an Apriori framework is a subset of the
set of patterns discovered with SupMaxK. This means that

283

[ P2 3 P4 P P6

ia[ia[ia]a]is[fs]i7]ia]isis]
I I

2122 i i

Class 1

Fig. 3. An extended version of the data set shown in Fig. 1 containing
15 addition items (i15 — i39) and two patterns P; and Fy, the rest being
identical to Fig. 1.

SupMaxK can find more and more discriminative patterns
as K increases from 1 (SupMax1), to 2 (SupMax2), to 3
(SupMax3), and so on. The patterns that are discovered by
SupMaxK but not by SupMax(K —1) are those with
SupMazK > r, but with SupMaz(K — 1) < r. Fig. 3 shows
an extended version of the data set shown in Fig. 1
containing 15 addition items (i1 — i30) and two patterns P
and P, the rest being identical to Fig. 1. In this data set,
given the same threshold r = 0.4, SupMax1 can find P,, but
not P, and P, both of which have Dif fSup = 0.6, but zero
SupMax1; SupMax2 can find P, in addition to Pj; further-
more, SupMax3 can find P; in addition to Py and P;. This
illustrates that SupMax3 can find all the patterns found
using SupMax1 and SupMax2, but not vice versa, as
discussed above. Furthermore, SupMax10 will be able to
discover pattern Fs in addition to the patterns found using
SupMax1, SupMax2, and SupMax3.

4.3.2 The Exactness of the SupMaxK Family

Lemmas 2 and 3 lead to Theorem 1, which shows the
relationship between SupMaxK and DiffSup.

Theorem 1. SupMaxK is a lower bound of DiffSup, for integer
Kell,|a—1]

Proof. Since DiffSup(a) is equivalent to SupMaxK(c) with
K =la| (we assumed RelSup'(a) > RelSup®(a) for
simplicity earlier this section), this theorem follows from
Lemma 3. O

Theorem 1 guarantees that the patterns discovered by
any SupMaxK members with threshold r also have
Dif fSup > r. Therefore, SupMaxK members with threshold
r discover only r — discriminative patterns.

4.3.3 The Increasing Completeness of the SupMaxK
Family

The maz function together with the antimonotonicity of

RelSup yields the following result about the antimonotoni-

city of each member of SupMaxK.

Theorem 2. Each member of SupMaxK is antimonotonic.

Proof. Let o C I be an item set, and o C I be a superset of
a, such that o/ = aU{i}, where i € I and i ¢ «. First,
from the antimonotonicity of RelSup, we have
RelSup'(a’) < RelSup'(c). Then, based on the property
of the max function,

maz(RelSup*(8')) > maz(RelSup*(5)),
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where |f| =K and |f|= K. Finally, we have the
following:

SupMazK(o/) = RelSup' (/) — Z}g:r,(RelSuﬁ (8))
< RelSup'(a) — ngax(RelSupz(ﬁ))

= SupMazK ().
a

Based on Theorem 2, given a threshold r, any member of
the SupMaxK family can be used within an Apriori-like
framework [2] to discover the complete set of patterns with
SupMaxK > r. Note that SupMaxK could be alternatively
defined using the min function, thus providing a better
estimation of DiffSup. However, this version of SupMaxK
will not be antimonotonic and thus cannot be used in the
Apriori framework for the systematic search of discrimina-
tive patterns.

Since there are a finite number of discriminative patterns
in a data set given a DiffSup threshold, and SupMaxK finds
more and more discriminative patterns as K increases
(Lemma 3), the set of patterns discovered with SupMaxK
and threshold r within an Apriori-like framework is
increasingly more complete with respect to the complete
set of r — discriminative patterns.

4.3.4 Summary of the Three Properties of the SupMaxK
Family
From the subset-superset relationship among SupMaxK
members, and the exactness and increasing completeness of
the SupMaxK family, SupMaxK members conceptually orga-
nize the complete set of discriminative patterns into nested
subsets of patterns that are increasingly more complete in
their coverage with respect to r — discriminative patterns.
This yields interesting relationships between DiffSup, Big-
gerSup, and the SupMaxK family, which are discussed below.

4.4 Relationship between DiffSup, BiggerSup, and
the SupMaxK Family
To understand relationship among DiffSup, BiggerSup, and
SupMaxK, Fig. 4 displays the nested structure of the
SupMaxK family together with DiffSup and BiggerSup from
the perspective of the search space of discriminative
patterns in a data set. L,; is the complete set of r—
discriminative patterns given a DiffSup threshold r. Leger
is the search space explored by CSET in order to find all the
patterns in L,;. Note that Legpr is a superset of Ly,
because BiggerSup is an upper bound of DiffSup. Note that,
Lespr can be much larger than Ly; for dense and high-
dimensional data sets, especially when a relatively low
BiggerSup threshold is used. In such cases, CSET may not be
able to generate complete results within an acceptable
amount of time. For instance, on the cancer gene expression
data set used in our experiments, the lowest BiggerSup
threshold for which CSET can produce the complete results
within 4 hours is 0.6. With a lower threshold 0.4, CSET
cannot produce the complete results within 24 hours.
Members of the SupMaxK family help address this
problem with BiggerSup by stratifying all the r—
discriminative patterns into subsets that are increasingly
more complete (Set Ly, Lo, ..., Ly, Liyi1,. .., Lay), as shown
in Lemma 3 and the subsequent discussion, and illustrated

e—— = I

I PDb SupMax1 L7 ]2 L|3 Lk Lty Lan LéSET

I PDb SupMax2 | I

I PDb SupMax3

I :  PDb SupMaxK I

I Pattern Discovered by (PDb) SupMax(K+1) I

I . All the r-discriminative Patterns % I
Search Space of BiggerSup (CSET) I

Lo e o o o o -

Fig. 4. Nested layers (L1, Ly, L3, ..., Ly, Lyy1,-- ., Lay, Losgr) of pat-
terns defined by SupMaxK, and relationship with the complete set of
discriminative patterns (layer L,;), and the search space of BiggerSup
used by CSET (layer L¢ser). (PDb stands for “Patterns Discovered by.”)
PDbSupMaxK is a subset of PDbSupMax(K + 1). Note that this figure
only shows the subset-superset relationship, while the size of each
rectangle does not the imply number of patterns in each set.

in Fig. 4. However, note that these superset-subset relation-
ships among SupMaxK members and between SupMaxK
and BiggerSup (used by CSET) hold only when the same
threshold is used for BiggerSup and all the SupMaxK
members, and unlimited computation time is available. In
practice, given the same fixed amount of time, progressively
lower thresholds can be used for SupMaxK members as K
decreases. This trade-off was illustrated earlier in Fig. 2b.
Since the focus of this paper is on dense and high-
dimensional data, another practical factor should be
considered, that is, the computational efficiency of the
SupMaxK members. In the next section, we will introduce a
special member of the SupMaxK family that is computa-
tionally suitable for dense and high-dimensional data.

4.5 SupMaxPair: A Special Member Suitable for
High-Dimensional Data

In the previous discussion, we showed that as K increases,
the set of patterns discovered with SupMaxK and threshold
r in an Apriori framework is increasingly more complete
with respect to the complete set of r — discriminative
patterns. Thus, in order to discover as many r—
discriminative patterns as possible, an as large as possible
value of K should be used given the time limit. However, it
is worth noting that the time and space complexity to
compute and store the second component in the definition
of SupMaxK, i.e., MazSup(a, K) = mazsecq(RelSup(5))
with |8] = K are both O(mX) (the exact times of calculation
are (]1\{5)/ where M is the number of items in the data set. In
high-dimensional data set (large M), K > 2 is usually
infeasible. For instance, if there are 10,000 items in the data
set (M = 10,000), even SupMaxK with K = 3 will require the
computation of the support of all ("*}") ~ 1.6 x 10! size-3
patterns. Therefore, due to our emphasis on dense and
high-dimensional data, we will focus on SupMaxK with
K =2, i.e., SupMaxPair, to balance the accurate estimation
of DiffSup and computational efficiency. Note that, based on
the definition of SupMaxPair, the computational complexity
of the second component of SupMaxPair (maximal pairwise
support in class Sy) for an item set a = {ay, ag, ..., oy} with
size greater than 2 is O(/?). However, according to the
Apriori framework [2], MazSup(e,2) only depends on
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three terms that will have been computed before the
computation of MazSup(a,?2) itself: MazSup({ay,as,...,
-1}, 2) and MaxSup({oq, ag, ..., a9, oy}, 2), and
MazxSup({ou-1,},2), and thus the computational com-
plexity for MazSup(a,2) is O(1) per item set a.

As shown in Fig. 4, SupMaxPair can perform a complete
search of the r — discriminative patterns in the first two
layers, even for a low value of r. Indeed, we will
demonstrate in our experimental results on a cancer gene
expression data set (Section 6) that searching these two
layers itself can enable SupMaxPair to discover many low-
support patterns that may not be discovered by CSET within
an acceptable amount of time. Furthermore, these patterns
are statistically significant and biologically relevant.

Before we discuss these results, we lay out the complete
framework that we use for discovering discriminative
patterns from dense and high-dimensional data.

5 FRAMEWORK FOR DISCRIMINATIVE PATTERN
MINING

In this section, we explain the major steps in the framework
used for discriminative pattern mining in our experiments:

e Step 1. This is an algorithm-specific step. For
example, for SupMaxPair, all the item-pair supports
are computed and stored in a matrix, whose (3, )
entry is the item-pair support of items ¢ and j. The
complexity of this step is O(nm?), where n is the
number of transactions, and m is the number of
unique items. No such precomputation has to be
done for CSET.

e Step 2. The Apriori framework [2] is used in this step
for discriminative pattern mining using the antimo-
notonic measures BiggerSup and SupMaxPair. For
SMP, discriminative patterns are first mined from one
class and then mined from the other, while CSET
discovers patterns once from the whole data set.

e Step 3. To facilitate further pattern processing and
pattern evaluation, we selected only the closed item
sets [37] from the complete set of item sets produced.

For clarity, we refer to the version of this framework

where BiggerSup is used for discovering patterns as CSET,
while the version using SupMaxPair is referred to as SMP in
the subsequent discussion. Our analysis of the quality of the
patterns and the computational time requirements are
presented with respect to the patterns produced by these
complete pipelines.

6 EXPERIMENTAL RESULTS

In order to evaluate the efficacy of different discriminative
pattern mining algorithms, particularly CSET (a represen-
tative of the approaches in group B discussed in Section 1)
and our proposed algorithm SMP, we designed two sets of
experiments. The first set of experiments utilize synthetic
data sets with varying density and dimensionality to study
the properties of CSET and SMP. The second set of
experiments involve the application of CSET and SMP to
a breast cancer gene expression data. The second set aims at
a systematic evaluation of the statistical significance and

TABLE 1
Number of Type-l and Type-II Discriminative Patterns
of Size-2, 4, 6, 8, and 10

size-2 | size-4 | size-6 | size-8 | size-10
type-I patterns 3 6 5 8 7
type-II patterns 7 4 5 2 3
Total patterns of each size 10 10 10 10 10

biological relevance of the resultant patterns, thus validat-
ing the effectiveness of CSET and SMP for knowledge
discovery from real data. All the experiments presented
here were run on a Linux machine with 8 Intel(R) Xeon(R)
CPUs (E5310 @ 1.60 GHz) and 16 GB memory.

6.1 Experiments on Synthetic Data Sets with

Varying Density and Dimensionality
In the first set of experiments, we study the performance of
SMP and CSET on synthetic binary data sets whose
background can be fully controlled. Specifically, we created
two collections of synthetic data sets, respectively, with
1) varying density and fixed dimensionality, and 2) varying
dimensionality and fixed density. We first describe the
approach we used to create these two collections of data sets
and then present the performance of SMP compared to CSET.

6.1.1 Methodology for Generating Synthetic Data Sets

Each synthetic data set has two major components: dis-
criminative and nondiscriminative patterns. Discriminative
patterns are the target of the mining algorithms, while
nondiscriminative patterns are obstacles. As discussed in
Section 1, an effective discriminative pattern mining algo-
rithm should be able to prune the nondiscriminative patterns
at early stage while discovering discriminative patterns.
Ten discriminative patterns each of sizes 2, 4, 6, 8, and 10
were embedded in each synthetic data set, resulting in a
total of 50 discriminative patterns per data set. To reflect the
distribution of different types of discriminative patterns in
real data, for each of the five sizes, we randomly
determined a number of patterns (out of 10) that can be
discovered by CSET but not SMP (type-I), and the
remaining patterns that can be discovered by SMP but not
CSET (type-II). Specifically, type-I patterns are those that
have DiffSup greater than 0.2, but SupMaxPair below 0.2. As
discussed in Section 4, SMP cannot find type-I patterns due
to the fact that SupMaxPair is a lower bound of DiffSup. In
contrast, type-II patterns are those that have BiggerSup
below the lowest threshold (0.2) that CSET can finish within
an acceptable amount of time (we use 4 hours as the
representative acceptable amount of time). SMP can find
these type-II patterns if it can effectively prune nondiscri-
minative patterns and can search at lower support levels
(0.1). Table 1 displays the number of type-lI and type-II
discriminative patterns of different sizes embedded in each
of the synthetic data sets. Note that these numbers are kept
the same for all the synthetic data sets to ensure that results
across different data sets are comparable. Note that in
practice, there may be other types of patterns that can be
discovered by both CSET and SMP. In this analysis, we do
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not embed these other types of patterns and focus only on
the effectiveness of CSET and SMP for discovering different
types of discriminative patterns.

For all the synthetic data sets, we fix the number of
samples at 700, in which half are of class 1 and the other
half are of class 2. Two collections of data sets were
generated as follows:

Varying density with fixed dimensionality. For this
collection of data sets, we fix the dimensionality at 4,000.
After we embed the 50 discriminative patterns, we have the
first data set of density 10 percent. Next, we keep adding
nondiscriminative patterns of size-10 and support greater
than 0.2, and create four more data sets with densities of
0.13, 0.16, 0.19, and 0.22, respectively.

Varying dimensionality with fixed density. For this
collection of data sets, we fix the density of the data set at
0.2. After we embed the 50 discriminative patterns (density
10 percent), we further add nondiscriminative patterns to
make the density equal to 0.2 and use this data set as the
first data set (the dimensionality is 350). Next, we further
add nondiscriminative patterns of size-10 and support
greater than 0.2 and simultaneously increase the dimen-
sionality of the data set to maintain the density at 0.2. In this
way, we create another four data sets with dimensionalities
of 500, 2,000, 4,000, and 6,000.

Note that the supporting transactions of both the
discriminative and nondiscriminative patterns are selected
randomly to avoid their combination into patterns of
larger sizes. To simulate practical situations, for each data
set generated in the above process, we add an additional
10 percent noise by flipping 10 percent of the 0s to 1s and
1s to Os.

6.1.2 Performance of SMP and CSET on Synthetic Data
Sets

For both the collections of data sets, we use a BiggerSup
threshold of 0.2 for CSET and a SupMaxPair threshold of 0.1
for SMP. These thresholds agree with the definitions of
type-1 and type-II patterns for the following experiments
(Section 6.1.1). The questions we want to answer in these
experiments are: Which level of the item set lattice can
CSET and SMP reach when mining these synthetic data sets
given the time limit of 4 hours, and correspondingly, how
many of the discriminative patterns at each level can be
discovered by the two algorithms?

Figs. 5a and 5b display the levels that CSET and SMP
reach on each of the five synthetic data sets of varying
density and varying dimensionality, respectively. Note that
the highest level is 10, which is the size of the largest
discriminative and nondiscriminative patterns. Several
observations can be made from Fig. 5a. First, when the
density is 10 percent, both CSET and SMP can reach all the
10 levels. Thus, CSET can discover all the 29 type-I patterns
(but none of the type-II patterns) and SMP can discover all
the 21 type-II patterns (but none of the type-l patterns).
Second, when the density increases to 13 percent, CSET
only reaches level 3 and thus can only discover its three
type-I patterns of size-2. In contrast, SMP can complete all
the 10 levels and discovers all the 21 type-II patterns.
Similar observation also holds for densities 0.16 and 0.19.

—h—SMP —d— SMP
104 —e—CSET 10 —e—CSET
8

6

4

Computation Completed (Level)
Computation Completed (Level)
>

2] 2

Q - - - 0 .
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Density Dimension
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Fig. 5. Levels that can be reached by CSET and SMP in the two series
of synthetic data sets (varying density and varying dimensionality).
(a) Data sets with varying density and fixed dimensionality (4,000).
(b) Data sets with varying dimensionality and fixed density (0.2).

This illustrates that even for reasonably high levels of
density, SMP can discover type-Il patterns with lower
support that cannot be discovered by CSET, even though it
can miss some type-I patterns that can be discovered by
CSET. Finally, when density increases to 0.22, both SMP and
CSET only reach level 2, i.e., CSET discovers its three type-I
patterns and SMP discovers its seven type-II patterns. This
indicates that for relatively very high levels of density, both
CSET and SMP can face challenges in discovering the
embedded patterns that they are supposed to discover (i.e.,
type-1 patterns for CSET and type-II patterns for SMP).
However, it should be noted that this deterioration in the
performance of SMP is due to the expense of the O(N?) time
complexity in the generation of level 2 candidates. Indeed,
even at this density (0.22), SMP can again finish all the
10 levels in only an additional 0.5 hour (total 4.5 hours).
However, CSET is still unable to generate all the level
3 candidates even in another 4 hours (total more than
8 hours). In summary, these results show that SMP is more
effective for searching for low-support discriminative
patterns on dense data sets.

Similar observations can also be made from Fig. 5b. First,
at the dimensionality 350, both CSET and SMP can complete
all the 10 levels and discover all the patterns they are
supposed to find. Second, at dimensionality 500, 2,000, and
4,000, CSET can only reach up to levels 6, 3, and 2,
respectively, while SMP still reaches all the 10 levels.
Finally, at dimensionality 6,000, both SMP and CSET can
only complete level 2. Again, SMP can finish all the 10 levels
in another half an hour, but CSET is still generating level 3
candidates in another 4 hours. These results show that SMP
is more effective for searching for low-support discrimina-
tive patterns from high-dimensional data sets.

From the above experimental results on the two
collections of synthetic data sets with varying density and
varying dimensionality, we demonstrated the efficacy of
SMP for mining low-support discriminative patterns from
dense and high-dimensional data sets. Next, we will use a
real gene expression data set to study the practical utility of
SMP for discovering low-support discriminative patterns.

6.2 Experiments on a Breast Cancer Gene
Expression Data Set

In the second set of experiments, we used CSET and SMP to

discover discriminative patterns from a breast cancer gene

expression data set. Only closed patterns are used in these

experiments. The details of this data set are provided in
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TABLE 2
Details of Patterns Discovered by CSET at
Various BiggerSup Thresholds

BiggerSup | Time | # Closed | Pattern Highest

Threshold (sec) Patterns Size(s) | NegLogP
0.4* 617 64942 2 12.09
0.55% 1454 84840 2-3 9.65
0.6 1558 90637 2-10 8.78

*Expansion of the set of patterns to patterns of larger sizes could not
finish in over 12 hours, and thus, their results are not included here.

Section 6.2.1. We first present a global analysis of these
patterns in Section 6.2.2. Subsequently, we perform an
extensive statistical and biological evaluation of these
patterns, the results of which are presented in Sections 6.2.3
and 6.2.4. In particular, we highlight the statistical sig-
nificance and biological relevance of low-support patterns
discovered by SMP but not CSET, thus illustrating the
complementarity that SMP can provide to the existing
approaches discussed in Section 1.

6.2.1 Data Set Description

A breast cancer gene expression data set [45] is used for
evaluating the efficacy of discriminative pattern mining
algorithms on complex, real data sets. This data set contains
the expression profiles of about 25,000 genes in 295 breast
cancer patients, categorized into two classes corresponding
to whether the patient survives the disease (0) or not (1).
Using preprocessing methodologies suggested by the
authors [46], we only considered 5,981 genes that showed
evidence of significant up- or down-regulation (at least a
twofold change), and whose expression measurements
were accurate (p-value < 0.01) for at least five patients.
Furthermore, to make the data set usable for binary pattern
mining algorithms, each column pertaining to the expres-
sion of a single gene is split into two binary columns. Since
the data have been properly normalized to eliminate
between-gene variations in the scale of their expression
values, we adopt a simple discretization method, as used in
other studies [32], [12]: a 1 is stored in the first column if the
expression of the gene is less than —0.2, while a 1 is stored
in the second column if the expression of the gene is greater
than 0.2. Values between —0.2 and 0.2 are not included,
since genes showing an expression around 0 are not
expected to be interesting, and may add substantial noise
to the data set. The resulting binary data set has 11,962
items and 295 transactions, with a density of 16.62 percent.

For this data set, discriminative pattern mining can help
uncover groups of genes that are collectively associated
with the progression or suppression of cancer, and our
experiments are designed to evaluate the effectiveness of
different algorithms for this task.

6.2.2 General Analysis of the Patterns Discovered

We ran CSET and SMP at the lowest parameter thresholds
for which they would finish in about 4 hours.” Only closed
patterns are used in our experiments. Due to the weaker

5. Some time period needed to be chosen for the experiments. The
duration of 4 hours is, although slightly arbitrary, generally reasonable for
most data analysis operations.
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TABLE 3
Details of Patterns Discovered by SMP at
Various SupMaxPair Thresholds

SupMazPair | Time | # Closed | Pattern Highest
Threshold (sec) Patterns Size(s) | NegLogP

0.18 2401 45982 2-7 12.09

0.2 1187 21285 2-5 12.09

0.25 332 3007 2-4 12.09

0.3 186 283 2-3 12.09

pruning of BiggerSup and the resulting large number of
discriminative patterns, we were forced to use relatively
higher thresholds for CSET and restrict the computation to
patterns of a limited size to obtain the patterns necessary
for our evaluation. Table 2 shows that the lowest BiggerSup
threshold for which CSET can produce the complete
results within 4 hours is 0.6. The lowest BiggerSup
threshold for which CSET can discover size-2 and size-3
patterns within 4 hours is 0.55. At a lower threshold of
0.4, CSET can only discover size-2 patterns before running
out of time. In contrast, SMP is able to run at a much
lower SupMaxPair threshold of 0.18 and finds patterns of
size as high as 7 in about 40 minutes. See Table 3 for the
details of the patterns found by SMP at different thresh-
olds. For the evaluation of pattern quality, we combine the
patterns discovered by CSET at the 0.4, 0.55, and
0.6 BiggerSup thresholds as the collection of all patterns
that can be discovered by CSET, while for SMP, we only
use the patterns discovered at the single SupMaxPair
threshold 0.18. Indeed, even with this setup that is slightly
biased toward CSET, there are still high quality low-
support patterns that can only be discovered by SMP, the
details of which are provided later.

In addition to analyzing the characteristics of the
patterns discovered by SMP and CSET, we also examined
the value of DiffSup for each individual gene constituting
these patterns. Specifically, Fig. 6 displays the distribution
of the DiffSup of individual genes in the patterns
discovered only by SMP at a SupMaxPair threshold of
0.18, but not by CSET. Among the 332 genes covered by
these patterns, almost 60 percent (198) of the genes have
DiffSup lower than the 0.18. Based on the discussion of
approaches that directly utilize Dif fSup or other measures
of discriminative power for finding discriminative patterns
(group C) in Section 1, it can be seen that these approaches
cannot discover any of these genes, and thus cannot
discover the patterns that include them. Since one of our
major foci is on algorithms that can discover patterns
whose individual genes may not be discriminative, we
discuss only the results of CSET and SMP, which can find
such patterns, in the rest of this section.

6.2.3 Statistical Evaluation

There are various ways to evaluate the importance of
discriminative patterns. We are interested in patterns that
occur disproportionately between the two classes. How-
ever, in real-world data sets, particularly those with small
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Fig. 6. Histogram of the DiffSup of individual genes in the patterns
discovered only by SMP, but not by CSET.

number of instances in the two classes, even patterns that
occur with similar support across classes will show some
deviation from perfect balance in data sets with relatively
small sample size. Thus, to ensure that the patterns found
are not just a result of random fluctuation, a statistical test is
commonly used to ensure that any deviation from equal
support is statistically significant. In this section, we will
perform this type of evaluation for the patterns from CSET
and SMP.

We use the Fisher exact test [16] for this evaluation,
whose result is a p-value (probability). If the p-value is
below some user-defined threshold, e.g., 0.05 or 0.01, then
the pattern is regarded as authentic. Note that p-values are
often expressed as their negative logy value for conve-
nience (the higher this —log,y value (denoted as NegLogP),
the more reliable the discriminative pattern is expected to
be). We will refer to this measure as NegLogP. If there are
multiple patterns, the NegLogP threshold needs to be
adjusted. By using a randomization test, as discussed
below, we were able to determine that a NegLogP of 8 is
unlikely to arise from a random pattern. We give the
technical details of this a bit later.

CSET

NegLogP

0 02 04 06 0.8 1
Pattern Support

(@)

In Fig. 7, we show plots of NegLogP versus global
support for the patterns discovered by both CSET and SMP.
For CSET, patterns discovered by using BiggerSup thresh-
olds 0.4, 0.55, and 0.6 were combined as described in
Section 6.2.2, while for SMP, a 0.18 threshold was used.
Several conclusions can be drawn from this figure. First,
CSET finds more patterns than SMP, particularly for
patterns with higher support (the ones with support greater
than 0.4). This is not surprising since SMP sacrifices
completeness to find lower support patterns. Second, CSET
finds many patterns with NegLogP less than 2, while all the
patterns discovered by SMP have NegLogP higher than 2.
This demonstrates the exactness of SupMaxPair (Theorem
1), i.e., because SupMaxPair is a lower bound of DiffSup, all
the patterns discovered with r are r — discriminative. Last
and the most important, SMP finds many patterns at low-
support level that are not found by CSET, especially the
ones with NegLogP higher than the significance threshold
8. Also, these patterns are constituted by many genes that
are not covered by the patterns discovered by CSET, as will
be discussed in Section 6.2.4.

We now come back to the details of how we determined
a significance threshold for NegLogP, both for the
completeness of the above discussion and to further
illustrate the quality of the patterns found by SMP but
not found by CSET. Because of the issues of low sample
size and high-dimensionality for data sets used for
problems such as biomarker discovery, many patterns
may be falsely associated with the class label. This raises
the multiple-hypothesis testing problem [40], [18], which is
addressed by various approaches, such as Bonferroni
correction [33], false discovery rate control [48], and
permutation test [33], [52], [18]. Permutation tests based
on row-wise, column-wise, and swap randomization [18]
have been used to assess the statistical significance of the
results of unsupervised pattern discovery and clustering
algorithms. While in the context of labeled transactions,
class-label permutation tests [42], [50] are often an effective
option. In this approach, a reference distribution for
evaluation measures like NegLogP is generated by ran-
domly shuffling the class labels (permutations). Specifi-
cally, for each iteration, the class labels are randomly
shuffled and reassigned to patients, discriminative patterns

SMP

NegLogP

0.8 1

0 0.2 0.4 0.6
Pattern Support
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Fig. 7. Plot of NegLogP versus global support for patterns from CSET and SMP, where the support is relative to the whole data set. (a) NegLogP
versus global support for CSET patterns. (b) NegLogP versus global support for SMP patterns.
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250 :

200

2 4 6 8 10 12 14
Pattern NegLogP

Fig. 8. Histogram of NegLogP values: (a) the maximum NegLogP for
each of the 1,000 permutation tests where randomized labels are used
by SMP. (b) The top 300NegLogP values of the patterns discovered only
by SMP but not by CSET.

are found, and the NegLogP values are computed for these
patterns using the same method as for the patterns
discovered with the true labels. The NegLogP values from
the random runs can be used to generate an empirical
distribution for the NegLogP values, which can be
displayed as a histogram as in Fig. 8. (Sometimes, only
the extreme (maximum) NegLogP values are used as in this
figure.) If a NegLogP of a pattern derived from the true
labels falls outside the main concentration of NegLogP
values from the random labels, then the NegLogP very
likely indicates a discriminative pattern with a “more than
random” variation from equal frequency across classes.

Fig. 8 summarizes the results of such a permutation test
for the data set being used in these experiments. The right-
hand side shows the top 300NegLogP of the patterns
discovered only by SMP but not by CSET, while the left-
hand side displays the maximum NegLogP for each of the
1,000 permutation tests where randomized labels are used
for pattern mining. We observe that the NegLogP values
with random labels rarely exceed 8 (less than 8.72 in each of
the 1,000 permutation tests). Thus, we can use 8 as a relaxed
threshold for significance, since only a few percent of the
random patterns are above this value. The NegLogP values
of the top-300 patterns discovered by SMP but not by CSET
with true label are much higher (all larger than 9.67). In
contrast, only 34 patterns discovered by CSET have a
NegLogP greater than 8. This shows that SMP can discover
additional statistically significant low-support patterns. In
the next section, we illustrate the biological significance of
these patterns and how they can be used to discover cancer-
related genes.

6.2.4 Biological Relevance of Patterns Based on a List
of Cancer-Related Genes
There are various ways to determine the biological
relevance of discriminative patterns. Since the application
we consider is that of discovering biomarkers for cancer,
we measured the biological relevance of the patterns using
a list of about 2,400 human genes known to be involved in
the induction, progression, and suppression of various
types of cancers [21]. Of these 2,400 genes, 611 were
included in the set of 5981 genes in our processed gene
expression data set. If the discriminative patterns found by
CSET and SMP, which are just small sets of genes, tend to
disproportionately contain these 610 cancer-related genes

as opposed to the non-cancer-related genes, then this
indicates that these patterns contain information that may
be of significance to a biological researcher. To make this
idea concrete for the purposes of evaluation, two evalua-
tion approaches were designed.

1. Pattern-based biological relevance. For each pat-
tern generated by CSET or SMP, we matched the
genes in the pattern with the set of 611 validated
cancer genes, giving us a measure of the “preci-
sion” of the pattern. For instance, if a pattern
contains three genes, of which two are found to
match the list of cancer genes, then the precision of
this pattern is 2/3 = 66.67%. Note that if a pattern
with N genes is randomly chosen from our set of
5981 genes, one would expect a precision of
[N+(611/5981)]/N = 10.2%.

2. Gene collection-based biological relevance. Since
patterns may overlap with each other (pattern
redundancy), and do not directly show how many
cancer genes can be discovered by SMP in addition to
CSET, we also designed a gene collection-based
evaluation methodology. Here, we collect the set of
genes covered by all the patterns discovered by
CSET(SMP), and compare this set of genes with the
set of 611 validated cancer genes just as for pattern-
based evaluation. For instance, if a set of 100 patterns
covers 300 genes, of which 50 are found to match the
list of cancer genes, then the precision of the set of
patterns is 50/300 = 16.67% and the recall is 50/611 =
8.18%. To compare, if we select 300 genes randomly
from the 5,981 genes, then the expected precision is
[300%(611/5981)]/300 = 10.2%, and the expected re-
call is [300%(611/5981)] /611 = 5.02%.

This section details the results obtained from with these

evaluation methodologies.

Brief preview of results. From the pattern-based
biological relevance evaluation, we observed that CSET
can discover patterns with good precision at relatively high-
support level, while SMP can further discover good quality
patterns at relatively low-support level, among which, there
are some patterns with 100 percent precision with respect to
the cancer gene list. From the gene collection-based
biological relevance evaluation, we observed that both the
techniques discovered substantially more cancer genes than
expected by random chance, especially among the higher
NegLogP patterns. In particular, SMP was able to discover
more cancer genes as compared to CSET due to its ability of
discovering low-support patterns. This result further in-
dicates the potential usefulness of recovering low-support
patterns and discovering biomarkers that may be examined
and utilized by the biology community. The following
discussion provides additional details of these results.

Results from pattern-based relevance. Fig. 9a shows the
distribution of pattern-based precision of those patterns
discovered only by SMP but not by CSET. For comparison,
we generated a sequence of size-k patterns exactly
according to the sizes of the patterns corresponding to
Fig. 9a. The distribution of precision of these random
patterns is shown in Fig. 9b. We can make the following
observations from a comparison of Figs. 9a and 9b: 1) these
patterns that are discovered exclusively by SMP include
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Fig. 9. Comparison of the distributions of pattern-based precision
between (a) the patterns discovered by SMP but not CSET and
(b) random generated patterns.

many that have a relatively high precision. Specifically,
about 200 patterns have precisions above 0.6, among which
there are 18 with a precision of 100 percent. 2) The pattern-
based precision of randomly generated patterns is mostly
(about 1,500 times) 0, and sometimes (about 300 times) falls
into the range of 0.2 and 0.3, but rarely (less than 20) goes
beyond 0.4, and never goes beyond 0.8. Interestingly, some
of the SMP patterns with 100 percent precision play similar
roles in cancer processes.

Results from gene collection-based relevance. To
investigate how many cancer genes can be discovered
using CSET and SMP, we summarized the gene collection-
based evaluation results for them in Tables 4 and 5,
respectively. These tables include the number of cancer
genes discovered, precision, recall, and expected recall for
randomly selected group of genes of the same size. Note
that, the expected precision for a random collection of genes
is 10.2 percent as calculated earlier, and thus we do not
include this in these tables. The following observations can
be made from these tables:

1. Both CSET and SMP wusually find very precise
patterns for reasonably high levels of the NegLogP
measure, and this precision is much higher than that
expected from a set of randomly selected gene
collection of the same size (10.2 percent). Similarly,
the recall values for the genes covered by these
patterns are much higher than those expected from
the same type of randomly selected gene collection,
as shown by a comparison with the last column of
these tables.

TABLE 4
Precision-Recall Results of CSET Patterns
with BiggerSup >0.4

NegLogP # # Genes | # Cancer | Pre | Rec | ERec

Threshold | Patterns | Covered Genes (%) (%) (%)
12 2 3 2 66.7 | 0.3 | 0.052
11 2 3 2 66.7 | 0.3 | 0.052
10 2 3 2 66.7 | 0.3 | 0.052
9 10 12 3 250 | 05 0.21
8 34 31 7 226 | 1.1 0.54

Pre: precision, Rec: Recall, Expected precision for random gene
collections is 10.2 percent, ERec: Expected recall of random gene
collections with the same size.

TABLE 5
Precision-Recall Results of SMP Patterns
with SupMaz Pair > 0.18

NegLogP # # Genes | # Cancer | Pre | Rec | ERec

Threshold | Patterns | Covered Genes (%) (%) (%)
12 2 4 2 50.0 | 0.3 | 0.067
11 6 7 3 429 | 05 0.12
10 200 36 11 306 | 1.8 0.60
9 541 57 17 29.8 | 2.8 0.95
8 1502 103 26 252 | 43 1.72

Pre: Precision, Rec: Recall, Expected precision for random gene
collections is 10.2 percent, ERec: Expected recall of random gene
collections with the same size.

2. For similar values of cancer gene discovery precision,
SMP generally finds more cancer genes than CSET.
For instance, at a precision of about 25 percent, the
recall of CSET is only 0.5 percent (three cancer genes),
while SMP has a recall 4.3 percent (26 cancer genes).

Note that the highlight of the second observation is not
that SMP discovers more cancer genes, but that SMP can
discover cancer genes from discriminative patterns with
low support in addition to the ones discovered by CSET,
thus indicating the complementarity of SMP to existing
approaches like CSET. Because of such complementarity,
even if SMP discovered less cancer genes than CSET, SMP
still complement CSET as long as additional genes are
exclusively discovered by SMP. Indeed, from the specific
example in the second observation, at least 23 cancer genes
are discovered by SMP in addition to CSET.

6.2.5 Biological Relevance of Patterns Based on
Biological Gene Sets

An alternative way of evaluating the biological relevance of
the patterns discovered only by SMP but not by CSET is to
estimate how well they capture the 5,452 known biological
gene sets (e.g., pathways) in the Molecular Signature
database [42]° (MSigDB). MSigDB is widely used collection
of gene groups containing genes with similar biological
functions. The methodology we adopt for this evaluation is
one of calculating the enrichment of one pattern with these
gene groups. This enrichment is measured as the prob-
ability of a random pattern of the same size having the
same or better annotations by a given gene group by
random chance, and the lower this probability, the more
enriched a pattern is with a given gene group. Specifically,
for a pattern of size k and a gene set of size m which share
2z common genes, we use the hypergeometric cumulative
distribution function” to compute the probability that there
are greater or equal to xz common genes between the
pattern and the gene set by random chance given that
the total number of genes in the data set is NV [3]. The —log
value of this probability can be considered as an enrich-
ment score between a pattern and a gene set (denoted by

6. Specifically, MSigDB (version 2.1, Feb. 2007) contains 386 positional
gene sets, 1,892 curated gene sets, 837 motif gene sets, 883 computational
gene sets, and 1,454 annotations in Gene Ontology. http://www.broad
institute.org/gsea/msigdb l/ ¢
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Fig. 10. Histogram of the best enrichment NeglLogEnrichP values w.r.t.
the gene sets in MSigDB, for the patterns discovered by SMP but not by
CSET. An enrichment p-value is computed only if a pattern and a gene
set have at least two genes in common.

NegLogEnrichP), and the larger this score, the more
significant the biological relevance of the pattern. For each
pattern, we use the best NegLogEnrichP with the 5,452 gene
sets as a measure of its biological relevance.

Instead of directly applying the above enrichment
methodology to all the patterns that are discovered only
by SMP but not by CSET, we first select a subset in which
no pairs of patterns have greater than 25 percent overlap
of genes. This selection helps reduce the effect of the
redundancy between these patterns on the enrichment
results. The resultant set has 37 patterns. Fig. 10 shows
the distribution of the best NegLogEnrichP values of these
37 patterns with respect to the gene sets in MSigDB. It can
observed that more than half of the patterns (20) have at
least two genes overlapping with one or more gene sets,
and some patterns even have a NegLogEnrichP value as
high as 8 (original p-value as low as 10~%). Interestingly,
some of the patterns in this collection are enriched with
several gene sets that are clearly related to breast cancer
such as BREAST-DUCTAL-CARCINOMA-GENES
(NegLogEnrichP = 8.02) and BREAST-CANCER-PROG-
NOSIS-NEG (NegLogEnrichP = 6.73), as well as several
gene sets that are related to general cancer-related
biological processes such as the cell-growth-related gene
set IRITANI-ADPROX-LYMPH [42] (NegLogEnrichP =
6.67) and the proliferation-related gene set HOFFMANN-
BIVSBII-BI-TABLE2 [42] (NegLogEnrichP = 6.15). These
results further support the biological relevance of the
patterns discovered only by SMP but not by CSET, and
thus demonstrate the benefits of using SMP to search for
low-support discriminative patterns in addition to existing
approaches.

6.2.6 Comparison of the Scalability of the Algorithms

In Section 6.1, we compared the effectiveness of CSET and
SMP for discovering low-support patterns from synthetic
data sets with varying density and dimensionality. In this
part of the study, we test the scalability of CSET and SMP
with varying thresholds on the real gene expression data. In
addition, we also test the FPClose (FPC) [19] algorithm
(plus pattern selection) as the baseline as used by other
studies [10], [15]. Note that, as mentioned in Section 6.2, the
gene expression data set was discretized with +0.2 as
thresholds, into a binary matrix with density 16.62 percent
and dimension 11,962, to preserve most of the information
in the data. This data set is quite dense, due to which CSET
can only generate complete results at a threshold larger
than 0.6. In order to obtain a more complete picture of the
scalabilities of FPC, CSET, and SMP, we discretized the
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Fig. 11. Scalability of different discriminative pattern mining algorithms
on the gene expression data.

gene expression data set using +0.3 as the discretization
threshold in this section, which yields a binary matrix with
density 8.71 percent.

Fig. 11 shows the results of these comparisons. The X-
axis in this plot is the threshold used for discriminative
pattern mining, while the Y-axis denotes the log,, (runtime
in seconds) value. Note that runtimes are recorded for any
algorithm only if it can produce output within 4 hours. The
relative minsup threshold used in FPC is defined on the
whole data set (both classes), while BiggerSup for CSET and
SupMaxPair for SMP take into account the support in each
of the classes individually. Therefore, for a fair comparison,
FPC’s minsup is adjusted according to the size ratio of the
two classes (divided by the percentage of the majority class
in the whole data set (0.74)) and then plotted together with
BiggerSup and SupMaxPair.

Several observations can be made from these plots: 1) the
FPC-based two-step approach can search for discriminative
patterns at high-support levels (above 0.55), 2) by using
BiggerSup, CSET is able to search at slightly lower support
levels (above 0.5) compared to FPC; and for the same
threshold, CSET is more efficient than FPC, and 3) SupMax-
Pair can explore pattern space with substantially lower
support levels (0.1-0.3). Thus, FPC and CSET can be used to
discover patterns at higher thresholds, while SMP is able to
find lower support patterns missed by the other approaches.

6.3 Summary of Results

Based on the experimental results on both the synthetic data
sets and the cancer gene expression data set presented in
this section, we have demonstrated that on dense and high-
dimensional data, there are patterns with relatively low
support that can only be discovered by SupMaxPair but not
by the existing approaches. Specifically, on the cancer gene
expression data set, the low-support discriminative patterns
discovered only by SMP are statistically significant and
biologically relevant.

We also did another set of experiments for studying how
well the members of SupMaxK approximate DiffSup as K
increases. We selected several UCI data sets [4], on which
all the discriminative patterns (given a relatively low
DiffSup threshold) can be discovered and used for the
study. The experimental results show that: 1) SupMax1
generally provides very poor approximation of DiffSup;
2) the approximation is improved substantially when K
goes to 2, i.e,, SupMaxPair; and 3) when K is increased
further to 3 and 4, the computation time increases
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exponentially, but the approximation improves much
slower compared to the improvement obtained when K
goes from 1 to 2. These experimental results indicate that
SupMaxPair provides a good balance between the approx-
imation of DiffSup and the computational expense. The
detailed results are discussed as a supplementary material
(available at http://vk.cs.umn.edu/SMP/).

7 RELATED WORK

Over the past decade, many approaches have studied
discriminative pattern mining and related topics. Dong and
Li [14] defined emerging patterns as item sets with a
sufficiently large growth rate (support ratio) between two
classes. A two-step algorithm is proposed to discover EPs,
which first finds frequent item sets with the Max-Miner
algorithm [6] for each of the two classes, and then compares
these item sets to find EPs. Emerging patterns were the first
formulation of discriminative patterns and have been
extended further to several special cases such as jumping
emerging patterns [26] and minimal emerging patterns [31],
[27]. Here, the discriminative power of a pattern is
measured with support ratio [14], or simply with the two
supports of the pattern in the two classes and two
corresponding thresholds [31]. As discussed in [5], these
emerging pattern mining algorithms must mine the data
multiple times given a certain threshold for support ratio
(or two thresholds for the two supports). In [5], a new
formulation of discriminative patterns, contrast sets, is
proposed along with an algorithm to mine them. CSET is
the first technique that formulates discriminative pattern
mining within an Apriori-like framework [2], [6], in which
different pruning measures can be used to perform a
systematic search on the item set lattice [2]. In [51], contrast
set mining is shown to be a special case of a more general
task, namely, rule learning, where a contrast set can be
considered as an antecedent of a rule whose consequent is a
group. Notably, CSET has also be used in some biomedical
applications [25]. The upper bounds of statistical discrimi-
native measures have also been studied for discriminative
pattern mining, e.g., information gain [9], x* — test [5], and
several others [34].

Next, we also briefly discuss other research work related
to discriminative pattern mining, although they are not the
focus of the paper. Many existing approaches have studied
the use of frequent patterns in classification. Associative
classifiers [29], [28], [55], [11], [49] are a series of approaches
that focus on the mining of high-support, high-confidence
rules that can be used in a rule-based classifier. Cheng et al.
[9] recently conducted a systematic evaluation of the utility
of frequent patterns in classification. Several pattern-based
classification frameworks have also been proposed, in
which a small number of discriminative patterns are
selected, which can achieve comparable classification
accuracy with respect to the whole set of discriminative
patterns [10], [15], [54], [30]. Discriminative pattern mining
from multiple classes has been studied in [5], [27], [25],
while mining complex discriminative patterns has been
studied in [31]. Although traditional pattern summarization
approaches [20] can be adopted to control the redundancy
among discriminative patterns, closeness and redundancy
are specially studied for in the context of discriminative
patterns, respectively, in [17] and [41].

8 CONCLUSIONS

In this paper, we addressed the necessity of trading off the
completeness of discriminative pattern discovery, with the
ability to discover low-support discriminative patterns from
dense and high-dimensional data within an acceptable
amount of time. For this, we proposed a family of
antimonotonic measures of discriminative power named
SupMaxK that conceptually organize the set of discrimina-
tive patterns into nested layers of subsets, and are
progressively more complete in their coverage, but require
increasingly more computation for their discovery. Given
the same and fixed amount of time, the SupMaxK family
provides a trade-off between the ability to search for low-
support discriminative patterns and the coverage of the
space of valid discriminative patterns for the corresponding
threshold. In particular, SupMaxK with K =2 named
SupMaxPair is a special member of this family that is
suitable for dense and high-dimensional data. We designed
a framework, named SMP, which uses SupMaxPair for
discovering discriminative patterns from dense and high-
dimensional data. A variety of experiments on both
synthetic data sets and a breast cancer gene expression
data set demonstrated that there are patterns with relatively
low support that can be discovered using SMP but not by
the existing approaches. In particular, the low-support
discriminative patterns discovered only by SMP from the
gene expression data set are statistically significant and
biologically relevant. In summary, SMP can complement
existing algorithms for discovering discriminative patterns
by finding patterns with relatively low support from dense
and high-dimensional data sets that other approaches fail to
discover within an acceptable amount of time. Thus, in
practice, it is recommended that CSET and other existing
approaches should be used to discover medium-to-high
support patterns from such data sets within an acceptable
amount of time, and then SMP could be used to further
discover low-support discriminative patterns that existing
approaches may not discover.

Our work can be extended in several directions. As
discussed in Section 4.4, the members of SupMaxK induce a
hierarchy of subsets of the complete set of discriminative
patterns. This hierarchy motivates further research that
focuses on the mining of discriminative patterns from the
other layers that are not covered by SupMaxPair. It is also
interesting to study the quality of the discriminative
patterns in the different layers of this hierarchy, which
may provide insights into different priorities for discrimi-
native pattern mining from these layers. Note that, the use
of measures from the SupMaxK family is only one possible
method for trading off the completeness of pattern
discovery with the ability to discover low-support dis-
criminative patterns from high-dimensional data. Indeed,
other approaches that adopt a different strategy for
handling this trade-off are also possible and should be
studied. Also, most existing discriminative pattern mining
algorithms (as well as SMP) are designed for binary data,
and have to rely on discretization for continuous data. It
will be useful to design approaches that can directly handle
continuous data for discriminative pattern mining, as has
been done for discovering patterns in an unsupervised
manner [36].
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